
Java API for XML Parsing
Version 1.0 Final Release

James Duncan Davidson (et al)

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto CA 94303 USA
650 960-1300

March 2, 2000

JavaTM API for XML Parsing Specification ("Specifica-tion")
Version: 1.0
Status: FCS
Release: March 2, 2000
Copyright 1999-2000 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information described therein may be protected by one or more U.S. patents, foreign
patents, or pending applications. Except as provided under the following license, no part of the Specification may be reproduced in any form
by any means without the prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the Specification
and the information described therein will be governed by the terms and conditions of this license and the Export Control and General Terms
as set forth in Sun’s website Legal Terms. By viewing, downloading or otherwise copying the Specification, you agree that you have read,
understood, and will comply with all of the terms and conditions set forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under Sun’s
intellectual property rights that are essential to practice the Specification, to internally practice the Specification solely for the purpose of
creating a clean room implementation of the Specification that: (i) includes a complete implementation of the current version of the
Specification, without subsetting or supersetting; (ii) implements all of the interfaces and functionality of the Specification, as defined by Sun,
without subsetting or supersetting; (iii) includes a complete implementation of any optional components (as defined by Sun in the
Specification) which you choose to implement, without subsetting or supersetting; (iv) implements all of the interfaces and functionality of
such optional components, without subsetting or supersetting; (v) does not add any additional packages, classes or interfaces to the "java.*" or
"javax.*" packages or subpackages (or other packages defined by Sun); (vi) satisfies all testing requirements available from Sun relating to the
most recently published version of the Specification six (6) months prior to any release of the clean room implementation or upgrade thereto;
(vii) does not derive from any Sun source code or binary code materials; and (viii) does not include any Sun source code or binary code
materials without an appropriate and separate license from Sun. The Specification contains the proprietary information of Sun and may only
be used in accordance with the license terms set forth herein. This license will terminate immediately without notice from Sun if you fail to
comply with any provision of this license. Upon termination or expiration of this license, you must cease use of or destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, the Coffee Cup logo and Duke logo are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR
THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any
portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW
VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will
be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims that later
versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND
U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in the Software and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R.
2.101 and 12.212 (for non-DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your evaluation of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the
right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose
related to the Specification and future versions, implementations, and test suites thereof.

Contents
SECTION 1 Overview 5
What is XML? 5

XML and the Java™ Platform6

About this Specification 6

Who Should Read this Document6

Development of this Specification7

Report and Contact7

Acknowledgements 8

SECTION 2 Endorsed Specifications 9
W3C XML 1.0 Recommendation9

W3C XML Namespaces 1.0 Recommendation10

Simple API for XML Parsing (SAX) 10

Document Object Model (DOM) Level 111
Java API for XML Parsing, Version 1.0 3

Contents
SECTION 3 Plugability Layer 13
SAX Plugability 13

DOM Plugability 15

Thread Safety 17

SECTION 4 Package javax.xml.parsers 19
public abstract class SAXParserFactory19

public abstract class SAXParser21

public abstract class DocumentBuilderFactory23

public abstract class DocumentBuilder25

public class FactoryConfigurationError28

public class ParserConfigurationException29

SECTION 5 Conformance Requirements 31
Document Character Set Encoding Conformance31

Well Formedness Conformance33

Validity Conformance 33

XML Namespace Conformance33

SECTION 6 Change History 35
From 1.0 Public Release to 1.0 Final Release35

From 1.0 Public Review to 1.0 Public Release35

SECTION 7 Future Directions 37
Updated SAX and DOM Support37

XSL Plugability Support 38

Pluggability Mechanism Enhancements38
4 March 2, 2000

SECTION 1 Overview
at
a set
xt,

mer
that
om-

by

s, as
t
es it.

ML
80’s
ocu-

with
1.1 What is XML?

XML is the meta language defined by the World Wide Web Consortium (W3C) th
can be used to describe a broad range of hierarchical mark up languages. It is
of rules, guidelines, and conventions for describing structured data in a plain te
editable file. Using a text format instead of a binary format allows the program
or even an end user to look at or utilize the data without relying on the program
produced it. However the primary producer and consumer of XML data is the c
puter program and not the end-user.

Like HTML, XML makes use of tags and attributes. Tags are words bracketed
the’<’ and’>’ characters and attributes are strings of the form’name="value"’

that are inside of tags. While HTML specifies what each tag and attribute mean
well as their presentation attributes in a browser, XML uses tags only to delimi
pieces of data and leaves the interpretation of the data to the application that us
In other words, XML defines only the structure of the document and does not
define any of the presentation semantics of that document.

Development of XML started in 1996 leading to a W3C Recommendation in
Febuary of 1998. However, the technology is not entirely new. It is based on SG
(Standard Generalized Markup Language) which was developed in the early 19
and became an ISO standard in 1986. SGML has been widely used for large d
mentation projects and there is a large community that has experience working
Java API for XML Parsing Version 1.0 5

Overview

6

ce
uch

 ver-
ise

ML
rm

s to
d
rams.

ion

ni-
ill

 in

nd
SGML. The designers of XML took the best parts of SGML, used their experien
as a guide and produced a technology that is just as powerful as SGML, but m
simplier and easier to use.

XML-based documents can be used in a wide variety of applications including
tical markets, e-commerce, business-to-business communication, and enterpr
application messaging.

1.2 XML and the Java™ Platform

In many ways, XML and the Java Platform are a partnership made in heaven. X
defines a cross platform data format and Java provides a standard cross platfo
programming platform. Together, XML and Java technolgies allow programmer
apply Write Once, Run Anywhere™ fundamentals to the processing of data an
documents generated by both Java based programs and non-Java based prog

1.3 About this Specification

This document describes the Java API for XML Parsing, Version 1.0. This vers
of the specification introduces basic support for parsing and manipulating XML
documents through a standardized set of Java Platform APIs.

When this specification is final there will be a Reference Implementation which
will demonstrate the capabilities of this API and will provide an operational defi
tion of the specification. A Compatibility Test Suite will also be available that w
verify whether an implementation of this specification is compliant.

1.4 Who Should Read this Document

This specification is intended for use by:

• Parser Developers wishing to implement this version of the specification
their parser.

• Application Developers who use the APIs described in this specification a
wish to have a more complete understanding of the API.
March 2, 2000

Development of this Specification

il-

cess.
e

d at:

als

ur
unity

,

This specification is not a tutorial or a user’s guide to XML, DOM, or SAX. Fam
iarity with these technologies and specifications on the part of the reader is
assumed.

1.5 Development of this Specification

This specification was developed in accordance with the Java Community Pro
It was developed under the authorization of Java Specification Request 5. Mor
information about the Java Community Process can be found at:

http://java.sun.com/jcp/

The specific information contained in Java Specification Request 5 can be foun

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_005_xml.html

The expert group who contributed to this specification is composed of individu
from a number of companies. These individuals are:

• James Duncan Davidson (Spec Lead), Sun

• Larry Cable (Original Spec Lead), Sun

• Takuki Kamiya, Fujitsu Ltd

• Scott Dietzen, BEA Weblogic

• Jon Winston, Ariba

• David Booth, Bluestone

• Mark Scardina, Oracle

• A. L. N. Reddy, Netscape

• Scott Fairchild, MCI WorldCom

• Kevin Lawrence, IBM

1.6 Report and Contact

Your comments on this specification are welcome and appreciated. Without yo
comments, the specifications developed under the auspices of the Java Comm
Process would not serve your needs as well. To comment on this specification
please send email to:
Java API for XML Parsing Version 1.0 7

Overview

8

ma-

he

X

,
on
ted

ed

 the

ies
ion.

m-
evel-
xml-spec-comments@eng.sun.com

You can stay current with Sun’s Java Platform related activities, as well as infor
tion on ourxml-interest andxml-announce mailing lists, at our website
located at:

http://java.sun.com/xml/

1.7 Acknowledgements

Many individuals and companies have given their time and talents to make this
specification, or the specifications that this specification relies upon, a reality. T
author of this specification would like to thank (in no particular order):

• David Megginson and the XML-DEV community who developed the SA
API

• The W3C DOM Working Group chaired by Lauren Wood

• The JSR-5 Expert Group listed above

• Graham Hamilton, Eduardo Pelegri-Lopart, Rajiv Mordani, Mark Hapner
Connie Weiss, Nancy K. Lee, Mark Reinhold, Josh Bloch, and Bill Shann
all of whom work at Sun Microsystems and whose talents have all reflec
upon the development of this API.

• David Brownell who led Sun’s early investigations into Java Platform bas
XML explorations.

• Larry Cable who started the JSR-5 process and led the development of
API though early Public Draft Phase.

• Eric Armstrong, Pier Fumagalli and Jason Hunter for reviewing late cop
of this spec and finding many areas which needed correction or clarificat

Most importantly, everyone who sent in feedback to this document and who co
mented on Sun’s Project X technologies which served as a starting point for d
oping this specification.
March 2, 2000

SECTION 2 Endorsed Specifications
ch
er-
rds

his

ing

d.
This specification endorses and builds upon several external specifications. Ea
specification endorsed by this document is called out together with the exact v
sion of the specification and its publicly accessible location. All of these standa
have conformance tests provided in the Compatibility Test Suite available for t
specification.

2.1 W3C XML 1.0 Recommendation

The W3C XML 1.0 Recommendation specifies the core XML syntax by subsett

the existing, widely used international SGML1 text processing standard. It is a
product of the W3C XML Activity, details of which can be found at:

http://www.w3.org/XML/

The XML 1.0 Recommendation can is located at:

http://www.w3.org/TR/1998/REC-xml-19980210

1. Standard Generalized Markup Language, ISO 8879:1986(E) as amended and correcte
Java API for XML Parsing Version 1.0 9

Endorsed Specifications

10

e
in.

tics
it
g
ng

s

y
e

o
ions

sub-
This specification subsumes the XML 1.0 Recommendation in its entirety for th
purposes of defining the XML language manipulated by the APIs defined here

2.2 W3C XML Namespaces 1.0 Recommendation

The W3C XML Namespaces Recommendation defines the syntax and seman
for XML structures required to be distinct from other XML markup. In particular,
defines a mechanism whereby a set of XML markup may have a distinguishin
"namespace" associated with it, and the responsibility of XML parser in handli
and exposing such namespace information.

The XML Namespaces 1.0 Recommendation is located at:

http://www.w3.org/TR/1999/REC-xml-names-19990114/

This specification subsumes the XML Namespaces 1.0 Recommendation in it
entirety.

2.3 Simple API for XML Parsing (SAX)

The Simple API for XML (SAX) is a public domain API developed cooperativel
by the members of the XML-DEV mailing list. It provides an event-driven interfac
to the process of parsing an XML document.

An event driven interface provides a mechanism for a "callback" notifications t
application’s code as the underlying parser recognizes XML syntactic construct
in the document.

The SAX 1.0 API is located at:

http://www.megginson.com/SAX/index.html

This specification subsumes the SAX 1.0 API in its entirety. The API packages
sumed are:

• org.xml.sax.*

• org.xml.sax.helpers.*
March 2, 2000

Document Object Model (DOM) Level 1

f a
e
t

M
t sub-
ack-
2.4 Document Object Model (DOM) Level 1

The Document Object Model (DOM) is a set of interfaces defined by the W3C
DOM Working Group. It describes facilities for a programmatic representation o
parsed XML (or HTML) document. The DOM Level 1 specification defines thes
interfaces using Interface Definition Language (IDL) in a language independen
fashion and also includes a Java Language binding.

The DOM Level 1 Recommendation is located at:

http://www.w3.org/TR/REC-DOM-Level-1/

This specification subsumes both the abstract semantics described for the DO
Level 1 Core interfaces and the associated Java Language binding. It does no
sume the HTML-based extensions defined by the Recommendation. The API p
age subsumed by this specification is:

• org.w3c.dom.*
Java API for XML Parsing Version 1.0 11

Endorsed Specifications

12
 March 2, 2000

SECTION 3 Plugability Layer
se
en-
,
y

pli-

le-

will
The SAX and DOM APIs provide broad and useful functionality. However, the u
of a SAX or a DOM parser typically requires knowledge of the specific implem
tation of the parser. Providing SAX and DOM functionality in the Java Platform
while allowing choice of the implementation of the parser, requires a Plugabilit
layer.

This section of the specification defines a Plugability mechanism to allow a com
ant SAX or DOM parser to be used through the abstractjavax.xml.parsers

API.

3.1 SAX Plugability

The SAX Plugability classes allow an application programmer to provide an imp
mentation of theorg.xml.sax.HandlerBase API to aSAXParser implementa-
tion and parse XML documents. As the parser processes the XML document, it
call methods on the providedHandlerBase .

In order to obtain aSAXParser instance, an application programmer first obtains
an instance of aSAXParserFactory . TheSAXParserFactory instance is
obtained via the staticnewInstance method of theSAXParserFactory class.
Java API for XML Parsing Version 1.0 13

Plugability Layer

14

-

olve

-
r

 a

e

This method uses thejavax.xml.parsers.SAXParserFactory system prop-
erty to determine theSAXParserFactory implementation class to load, instantiate
and return. If thejavax.xml.parsers.SAXParserFactory system property is
not defined, then a platform defaultSAXParserFactory instance will be returned.

If the SAXParserFactory implementation class described by the
javax.xml.parsers.SAXParserFactory property cannot be loaded or instan
tiated at runtime, aFactoryConfigurationError is thrown. This error message
must contain a descriptive explanation of the problem and how the user can res
it.

The instance ofSAXParserFactory can optionally be configured by the applica
tion programmer to provide parsers that are namespace aware, or validating, o
both. These settings are made using thesetNamespaceAware andsetValidat-

ing methods of the factory. The application programmer can then obtain aSAX-

Parser implementation instance from the factory. If the factory cannot provide
parser configured as set by the application programmer, then aParserConfigu-

rationException is thrown.

3.1.1 Examples

The following is a simple example of how to parse XML content from a URL:

SAXParser parser;
HandlerBase handler = new MyApplicationHandlerBase();
SAXParserFactory factory = SAXParserFactory.newInstance();
try {
 parser = factory.newSAXParser();
 parser.parse("http://myserver/mycontent.xml", handler);
} catch (SAXException se) {
 // handle error
} catch (IOException ioe) {
 // handle error
} catch (ParserConfigurationException pce) {
 // handle error
}

The following is an example of how to configure a SAX parser to be namespac
aware and validating:

SAXParser parser;
HandlerBase handler = new MyApplicationHandlerBase();
SAXParserFactory factory = SAXParserFactory.newInstance();
March 2, 2000

DOM Plugability

and

ser

ting,

t

factory.setNamespaceAware(true);
factory.setValidating(true);
try {
 parser = factory.newSAXParser();
 parser.parse("http://myserver/mycontent.xml", handler);
} catch (SAXException se) {
 // handle error
} catch (IOException ioe) {
 // handle error
} catch (ParserConfigurationException pce) {
 // handle error
}

3.2 DOM Plugability

The DOM plugability classes allow a programmer to parse an XML document
obtain anorg.w3c.dom.Document object from aDocumentBuilder implemen-
tation which wraps an underlying DOM implementation.

In order to obtain aDocumentBuilder instance, an application programmer first
obtains an instance of aDocumentBuilderFactory . TheDocumentBuilder-

Factory instance is obtained via the staticnewInstance method of theDocu-

mentBuilderFactory class. This method uses the
javax.xml.parsers.DocumentBuilderFactory system property to deter-
mine theDocumentBuilderFactory implementation class to load, instantiate
and return. If thejavax.xml.parsers.DocumentBuilderFactory system
property is not defined, then a platform defaultDocumentBuilderFactory

instance will be returned.

If the DocumentBuilderFactory implementation class described by the
javax.xml.parsers.DocumentBuilderFactory property cannot be loaded or
instantiated at runtime, aFactoryConfigurationError is thrown. This error
message must contain a descriptive explanation of the problem and how the u
can resolve it.

The instance ofDocumentBuilderFactory can optionally be configured by the
application programmer to provide parsers that are namespace aware or valida
or both. These settings are made using thesetNamespaceAware andsetVali-

dating methods of the factory. The application programmer can then obtain a
DocumentBuilder implementation instance from the factory. If the factory canno
Java API for XML Parsing Version 1.0 15

Plugability Layer

16

t

ate

be
provide a parser configured as set by the application programmer, then aParser-

ConfigurationException is thrown.

3.2.1 Reliance on SAX API

The DocumentBuilder reuses several classes from the SAX API. This does no
mean that the implementor of the underlying DOM implementation must use a
SAX parser to parse the XML content, only that the implementation communic
with the application using these existing and defined APIs.

3.2.2 Examples

The following is a simple example of how to parse XML content from a URL:

DocumentBuilder builder;
DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
String location = "http://myserver/mycontent.xml";
try {
 builder = factory.newDocumentBuilder();
 Document document = builder.parse(location);
} catch (SAXException se) {
 // handle error
} catch (IOException ioe) {
 // handle error
} catch (ParserConfigurationException pce) {
 // handle error
}

The following is an example of how to configure a factory to produce parsers to
namespace aware and validating:

DocumentBuilder builder;
DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
factory.setNamespaceAware(true);
factory.setValidating(true);
String location = "http://myserver/mycontent.xml";
try {
 builder = factory.newDocumentBuilder();
 Document document = builder.parse(location);
} catch (SAXException se) {
 // handle error
March 2, 2000

Thread Safety

pro-

o-
only

ould

reads
} catch (IOException ioe) {
 // handle error
} catch (ParserConfigurationException pce) {
 // handle error
}

3.3 Thread Safety

Implementations of theSAXParser andDocumentBuilder abstract classes are
not expected to be thread safe by this specification. This means that application
grammers should not expect to be able to use the same instance of aSAXParser or
DocumentBuilder in more than one thread at a time without side effects. If a pr
grammer is creating a multi-threaded application, they should make sure that
on thread has access to any givenSAXParser or DocumentBuilder instance.

Configuration of aSAXParserFactory or DocumentBuilderFactory is also
not expected to be thread safe. This means that an application programmer sh
not allow aSAXParserFactory or DocumentBuilderFactory to have itsset-

NamespaceAware or setValidating methods from more than one thread.

It is expected that thenewSAXParser method of aSAXParserFactory imple-
mentation and thenewDocumentBuilder method of aDocumentBuilderFac-

tory will be thread safe without side effects. This means that an application
programmer should expect to be able to create parser instances in multiple th
at once from a shared factory without side effects or problems.
Java API for XML Parsing Version 1.0 17

Plugability Layer

18
 March 2, 2000

SECTION 4 Package javax.xml.parsers
g-
This section defines the API of thejavax.xml.parsers package.

4.1 public abstract class SAXParserFactory

TheSAXParserFactory defines a factory API that enables applications to confi
ure and obtain a SAX based parser to parse XML documents.

public abstract class SAXParserFactory {
 public static SAXParserFactory newInstace();
 protected SAXParserFactory();
 public SAXParser newSAXParser()
 throws ParserConfigurationException, SAXException;
 public void setNamespaceAware(boolean aware);
 public void setValidating(boolean validating);
 public boolean isNamespaceAware();
 public boolean isValidating();
}

Java API for XML Parsing Version 1.0 19

Package javax.xml.parsers

20

c

use

ide

an
le-
e

y are
4.1.1 public static SAXParserFactory newInstance()

Returns a new instance of aSAXParserFactory . The implementation of theSAX-

ParserFactory returned depends on the setting of thejavax.xml.pars-

ers.SAXParserFactory property or, if the property is not set, a platform specifi
default.

Throws aFactoryConfigurationError if the class implementing the factory
cannot be found or instantiated. An Error is thrown instead of an exception beca
the application is not expected to handle or recover from such events.

4.1.2 protected SAXParserFactory()

An empty constructor is provided. Implementors of this abstract class must prov
their own public no-argument constructor in order for the staticnewInstance

method to work correctly. Application programmers should be able to instantiate
implementation of this abstract class directly if they want to use a specific imp
mentation of this API without using the static newInstance method to obtain th
configured or platform default implementation.

4.1.3 public SAXParser newSAXParser()

Returns a new configured instance of typeSAXParser .

Throws aParserConfigurationException if the SAXParser instance cannot
be created with the requested configuration.

Throws aSAXException if the initialization of the underlying parser fails.

4.1.4 public void setNamespaceAware(boolean aware)

Configuration method that specifies whether the parsers created by this factor
required to provide XML namespace support or not.

Note, if a parser cannot be created by this factory that satisfies the requested
namespace awareness value, aParserConfigurationException will be thrown
when the program attempts to acquire the parser via thenewSaxParser method.
March 2, 2000

public abstract class SAXParser

re

ted

e

-

4.1.5 public void setValidating(boolean validating)

Configuration method whether specifies if the parsers created by this factory a
required to validate the XML documents that they parse.

Note, that if a parser cannot be created by this factory that satisfies the reques
validation capacity, aParserConfigurationException will be thrown when
the application attempts to acquire the parser via thenewSaxParser method.

4.1.6 public boolean isNamespaceAware()

Indicates if thisSAXParserFactory is configured to produce parsers that are
namespace aware or not.

4.1.7 public boolean isValidating()

Indicates if thisSAXParserFactory is configured to produce parsers that validat
XML documents as they are parsed.

4.2 public abstract class SAXParser

Implementation instances of theSAXParser abstract class contain an implementa
tion of theorg.xml.saxParser interface and enables content from a variety of
sources to be parsed using the contained parser. Instances ofSAXParser are
obtained from aSAXParserFactory by invoking itsnewSAXParser method.

public abstract class SAXParser {
 protected SAXParser();
 public void parse(InputStream stream, HandlerBase base)
 throws SAXException, IOException;
 public void parse(String uri, HandlerBase base)
 throws SAXException, IOException;
 public void parse(File file, HandlerBase base)
 throws SAXException, IOException;
 public void parse(InputSource source, HandlerBase base)
 throws SAXException, IOException;
 public abstract org.xml.sax.Parser getParser()
 throws SAXException;
 public abstract boolean isNamespaceAware();
 public abstract boolean isValidating();
}

Java API for XML Parsing Version 1.0 21

Package javax.xml.parsers

22

con-
ple-
ruct
n

ified
4.2.1 protected SAXParser()

An empty constructor is provided. Implementations should provide a protected
structor so that their factory implementation can instantiate instances of the im
mentation class. Application programmers should not be able to directly const
implementation subclasses of this abstract subclass. The only way a applicatio
should be able to obtain a reference to aSAXParser implementation instance is by
using the appropriate methods of theSAXParserFactory .

4.2.2 public void parse(InputStream stream, HandlerBase base)

Parses the contents of the givenjava.io.InputStream as an XML document
using the specifiedorg.sax.xml.HandlerBase object.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO errors occur reading the given
InputStream .

Throws anIllegalArgumentException if the givenInputStream is null.

4.2.3 public void parse(String uri, HandlerBase base)

Parses the content of the given URI as an XML document using the specified
org.sax.xml.HandlerBase object.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.Throws ajava.io.IOException if any IO errors occur while read-
ing content located by the given URI.

Throws anIllegalArgumentException if the given URI is null.

4.2.4 public void parse(File file, HandlerBase base)

Parses the content of the given java.io.File as an XML document using the spec
org.sax.xml.HandlerBase object.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.
March 2, 2000

public abstract class DocumentBuilderFactory

sed.

o

Throws ajava.io.IOException if any IO errors occur while reading content
from the givenFile .

Throws anIllegalArgumentException if the givenFile is null.

4.2.5 public void parse(InputSource source, HandlerBase base)

Parses the content of the givenorg.xml.sax.InputSource as an XML docu-
ment using the specifiedorg.sax.xml.HandlerBase object.

Throws anorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws ajava.io.IOException if any IO Errors occur while reading content
from the given InputSource.

Throws anIllegalArgumentException if the given InputSource is null.

4.2.6 public abstract org.xml.sax.Parser getParser()

Returns the underlyingorg.xml.sax.Parser object which is wrapped by this
SAXParser implementation.

Throws aSAXException if the underlying parser cannot be obtained.

4.2.7 public abstract boolean isNamespaceAware()

Returns whether or not this parser supports XML namespaces.

4.2.8 public abstract boolean isValidating()

Returns whether or not this parser supports validating XML content as it is par

4.3 public abstract class DocumentBuilderFactory

TheDocumentBuilderFactory defines a factory API that enables applications t
configure and obtain a parser to parse XML documents into a DOMDocument

tree.

public abstract class DocumentBuilderFactory {
Java API for XML Parsing Version 1.0 23

Package javax.xml.parsers

24

use

ss

an
le-
e

 public static DocumentBuilderFactory newInstance();
 protected DocumentBuilderFactory();
 public DocumentBuilder newDocumentBuilder()
 throws ParserConfigurationException;
 public void setNamespaceAware(boolean awareness);
 public void setValidating(boolean validating);
 public boolean isNamespaceAware();
 public boolean isValidating();
}

4.3.1 public static DocumentBuilderFactory newInstance()

Returns a new instance of aDocumentBuilderFactory . The implementation of
theDocumentBuilderFactory returned depends on the setting of the
javax.xml.parsers.DocumentBuilderFactory property or, if the property is
not set, a platform specific default.

Throws aFactoryConfigurationError if the class implementing the factory
cannot be found or instantiated. An Error is thrown instead of an exception beca
the application is not expected to handle or recover from such events.

4.3.2 protected DocumentBuilderFactory()

An empty constructor is provided by the API. Implementors of this abstract cla
must provide a public no-argument constructor in order for the staticnewInstance

method to work correctly. Application programmers should be able to instantiate
implementation of this abstract class directly if they want to use a specific imp
mentation of this API without using the static newInstance method to obtain th
configured or platform default implementation.

4.3.3 public DocumentBuilder newDocumentBuilder()

Returns a new configured instance of typeDocumentBuilder .

Throws aParserConfigurationException if the DocumentBuilder instance
cannot be created with the requested configuration.
March 2, 2000

public abstract class DocumentBuilder

y are

ted

ted

t

t

 not
4.3.4 public void setNamespaceAware(boolean aware)

Configuration method that specifies whether the parsers created by this factor
required to provide XML namespace support or not.

Note that if a parser cannot be created by this factory that satisfies the reques
namespace awareness, aParserConfigurationException will be thrown when
an attempt to obtain the parser via thenewSaxParser method is made.

4.3.5 public void setValidating(boolean validating)

Configuration method that specifies if the parsers created by this factory are
required to validate the XML documents that they parse.

Note that if a parser cannot be created by this factory that satisfies the reques
validation capacity, aParserConfigurationException will be thrown when an
attempt to obtain the parser via thenewSaxParser method is made.

4.3.6 public boolean isNamespaceAware()

Indicates if thisDocumentBuilderFactory is configured to produce parsers tha
are namespace aware or not.

4.3.7 public boolean isValidating()

Indicates if thisDocumentBuilderFactory is configured to produce parsers tha
validate XML documents as they are parsed.

4.4 public abstract class DocumentBuilder

Instances ofDocumentBuilder provide a mechansim for parsing XML docu-
ments into a DOM document tree represented by anorg.w3c.dom.Document

object. ADocumentBuilder instance is obtained from aDocumentBuilder-

Factory by invoking itsnewDocumentBuilder method.

Note that DocumentBuilder uses several classes from the SAX API. This does
require that the implementor of the underlying DOM implementation use a SAX
parser to parse XML content into aorg.w3c.dom.Document . It merely requires
Java API for XML Parsing Version 1.0 25

Package javax.xml.parsers

26

con-
ple-
ruct
n

that the implementation communicate with the application using these existing
APIs.

public abstract class DocumentBuilder {
 protected DocumentBuilder();
 public Document parse(InputStream is)
 throws SAXException, IOException;
 public Document parse(String uri)
 throws SAXException, IOException;
 public Document parse(File f)
 throws SAXException, IOException;
 public abstract Document parse(InputSource is)
 throws SAXException, IOException;
 public abstract boolean isNamespaceAware();
 public abstract boolean isValidating();

public abstract void setEntityResolver(EntityResolver er);
 public abstract void setErrorHandler(ErrorHandler eh);
 public Document newDocument();
}

4.4.1 protected DocumentBuilder()

An empty constructor is provided. Implementations should provide a protected
structor so that their factory implementation can instantiate instances of the im
mentation class. Application programmers should not be able to directly const
implementation subclasses of this abstract subclass. The only way a applicatio
should be able to obtain a reference to aDocumentBuilder implementation
instance is by using the appropriate methods of theDocumentBuilder .

4.4.2 public Document parse(InputStream stream)

Parses the contents of the givenjava.io.InputStream as an XML document
and returns anorg.w3c.dom.Document object.

Throws ajava.io.IOException if any IO errors occur reading the given
InputStream .

Throws anIllegalArgumentException if the givenInputStream is null.
March 2, 2000

public abstract class DocumentBuilder

ent

t

t

sed.
4.4.3 public Document parse(String uri)

Parses the content at the location specified by the given URI as an XML docum
and returns anorg.w3c.dom.Document object.

Throws ajava.io.IOException if any IO errors occur while reading the conten
specified by the URI.

Throws anIllegalArgumentException if the URI is null.

4.4.4 public Document parse(File file)

Parses the content of the givenjava.io.File as an XML document and returns
anorg.w3c.dom.Document object.

Throws ajava.io.IOException if any IO errors occur while reading the conten
from theFile .

Throws anIllegalArgumentException if the File is null.

4.4.5 public abstract Document parse(InputSource source)

Parses the content of the givenorg.xml.sax.InputSource as an XML docu-
ment and returns aorg.w3c.dom.Document object.

Throws ajava.io.IOException if any IO errors occur reading the content from
the InputSource .

Throws anIllegalArgumentException if the InputSource is null.

4.4.6 public abstract boolean isNamespaceAware()

Returns whether or not this parser supports XML namespaces.

4.4.7 public abstract boolean isValidating()

Returns whether or not this parser supports validating XML content as it is par
Java API for XML Parsing Version 1.0 27

Package javax.xml.parsers

28

d

vior.

ry
by a
aded
4.4.8 public abstract void setEntityResolver(EntityResolver er)

Specifies theorg.xml.sax.EntityResolver to be used by thisDocument-

Builder . Setting theEntityResolver to null, or not calling this method, will
cause the underlying implementation to use its own default implementation an
behavior.

4.4.9 public abstract void setErrorHandler(ErrorHandler eh)

Specifies theorg.xml.sax.ErrorHandler to be used by thisDocument-

Builder . Setting theErrorHandler to null, or not calling this method, will cause
the underlying implementation to use its own default implementation and beha

4.4.10 public Document newDocument()

Creates an neworg.w3c.dom.Document instance from the underlying DOM
implementation.

4.5 public class FactoryConfigurationError

This error is thrown if there is a configuration problem when creating new facto
instances. This error will also be thrown when the class of a Factory specified
system property, or the class of the default system parser factory, cannot be lo
or instantiated. Implementation or Application developers should never need to
directly construct or catch errors of this type.

public class FactoryConfigurationError extends Error {
 public FactoryConfigurationError();
 public FactoryConfigurationError(String msg);
 public FactoryConfigurationError(Exception e);

public FactoryConfigurationError(Exception e, String msg);
 public String getMessage();
 public Exception getException();
}

4.5.1 public FactoryConfigurationError()

Constructs a newFactoryConfigurationError with no detail message.
March 2, 2000

public class ParserConfigurationException

on-
hat

 are
 in
4.5.2 public FactoryConfigurationError(String msg)

Constructs a newFactoryConfigurationError with the given detail message.

4.5.3 public FactoryConfigurationError(Exception e)

Constructs a newFactoryConfigurationError with the givenException as a
root cause.

4.5.4 public FactoryConfigurationError(Exception e, String msg)

Constructs a newFactoryConfigurationError with the givenException as a
root cause and the given detail message.

4.5.5 public String getMessage()

Returns the detail message of the error or null if there is no detail message.

4.5.6 public Exception getException()

Returns the root cause of the error or null if there is none.

4.6 public class ParserConfigurationException

This exception is thrown if a factory cannot configure a parser given its current c
figuration parameters. For example, if a parser factory cannot create parsers t
validate, but have been configured to do so, it will throw this exception when a
parser is requested to via the parser creation methods. Application developers
not expected to construct instances of this exception type, but must catch them
code that obtains parser instances from a factory.

public class ParserConfigurationException extends Exception {
 public ParserConfigurationException();
 public ParserConfigurationException(String msg);
}

Java API for XML Parsing Version 1.0 29

Package javax.xml.parsers

30
4.6.1 public ParserConfigurationException()

Constructs a newParserConfigurationException with no detail error mes-
sage.

4.6.2 public ParserConfigurationException(String msg)

Constructs a newParserConfigurationException with the given detail error
message.
March 2, 2000

SECTION 5 Conformance Requirements
ns of
ed

table

DE
arac-
ro-
le:

-
L
cod-

r

This section describes the conformance requirements for parser implementatio
this specification. Parser implementations that are accessed via the APIs defin
here must implement these constraints, without exception, to provide a predic
environment for application development and deployment.

5.1 Document Character Set Encoding Conformance

XML documents, both markup and content, are represented using the UNICO
character set. A character set may be physically encoded using one or more ch
ter set encodings. An XML document’s encoding is typically announced in the p
log of the document in the XML declaration Processing Instruction. For examp

<?XML Version="1.0" encoding="UTF-8"?>

Note that if the XML document’s character encoding is ASCII, the XML declara
tion does not need to contain the encoding attribute. Appendix F of the W3C XM
1.0 Recommendation describes a mechanism for determining the character en
ing of an XML document that is not encoded in the UTF-8 or UTF-16 characte
sets.
Java API for XML Parsing Version 1.0 31

Conformance Requirements

32

od-

s,
L

l
or
Parser implementations are required to support the following character set enc
ings:

• ASCII

• UTF-8

• UTF-16

In addition, parser implementations may optionally support additional encoding
including the following encoding values which are also defined in the W3C XM
Recommendation:

• ISO-10646-UCS-2

• ISO-10646-UCS-4

• ISO-8859-1

• ISO-8859-2

• ISO-8859-3

• ISO-8859-4

• ISO-8859-5

• ISO-8859-6

• ISO-8859-7

• ISO-8859-8

• ISO-8859-9

• ISO-2022-JP

• Shift_JIS

• EUC-JP

It is an error for a document to declare a particular encoding and actually use
another. If this situation occurs, the parser must throw an exception of typeSAXEx-

ception and stop processing the document.

Parser implementations are required to support the facility whereby an externa
entity may declare its own encoding distinct from that of the referencing entity
document.
March 2, 2000

Well Formedness Conformance

tex-

y

ion

rt

idat-
-

at

ck

t
ithin
D.
5.2 Well Formedness Conformance

The W3C XML 1.0 Recommendation defines a well formed document to be a
tual object that meets the following requirements:

• There is exactly one element, the root (or document) element which ma
contain other elements.

• Meets all the well-formedness constraints defined in the Recommendat

• References, either directly or indirectly, only parsed entities that are also
well formed.

All parser implementations implementing this specification are required to repo
any violations of the well-formedness constraints defined by the W3C XML 1.0
Recommendation.

5.3 Validity Conformance

In addition to checking documents for well-formedness, as defined above, a val
ing parser implementation is also required to check an XML document for con
formance to:

• The Document’s DTD (if any)

• The XML validity constraints defined in section 2.8 of the W3C XML 1.0
Recommendation

5.4 XML Namespace Conformance

Parser implementations may optionally provide support to parse documents th
utilize the W3C XML Namespaces Recommendation.

5.4.1 Non Validating Parser Conformance

A non-validating parser that implements namespace support is required to che
for, and report as an error, any syntactic violations defined by the W3C XML
Namespaces Recommendation. Parser implementations are required to detec
namespace usage that has no matching prior namespace declaration, either w
the body of the document entity or within the internal subset of a document’s DT
Java API for XML Parsing Version 1.0 33

Conformance Requirements

34

ing

ove,
 to
 a
Parser implementations encountering namespace usage without a prior match
namespace declaration shall result in a parsing error.

5.4.2 Validating Parser Conformance

In addition to meeting the requirements for a non-validating parser detailed ab
a validating parser that implements namespace support as defined is required
check for, and report as an error, any namespace used buy not declared within
document or its internal or external DTD sets.
March 2, 2000

SECTION 6 Change History
 spec-

XML
at is
ce,

the
user

he
This section lists the changes that have occurred over the development of this
ification.

6.1 From 1.0 Public Release to 1.0 Final Release

The reservation of the java and javax namespace prefixes was removed. The
Namespace specification is clear that a namespace is a collection of names th
identified by a URI reference. The prefix is a local identifier for the URI referen
therefore the reservation of the java and javax namespaces was in error.

6.2 From 1.0 Public Review to 1.0 Public Release

From the Public Review draft of this specification to the Public Release version,
specification was reordered and rewritten to address general feedback from the
community. This feedback indicated that the specification was too detailed in
describing the endorsed specifications and not detailed enough in describing t
plugability layer.
Java API for XML Parsing Version 1.0 35

Change History

36

to

e

ser
set-
setta-

 the

tal
ThenewParser method of theSAXParserFactory abstract class was removed.
Feedback showed that it was confusing to be able to obtain both theSAXParser

wrapper and the underlying implementation from the factory. Removing this
method allows the API to be more understandable while preserving the ability
access the underlying parser via thegetParser method of theSAXParser

abstract class.

ThegetLocale andsetLocale methods of the various classes were removed.
Instead it was felt that parser implementation authors should report errors in th
configured default locale of the execution environment.

A new exception namedParserConfigurationException was added so that a
parser factory can signal to an application that it can’t provide a parser with the
desired configuration. ThecheckXXX methods aren’t sufficient for this purpose as
a situation may arise where there is a mutually exclusive setting of various par
properties. At this time, this problem is potentially minor as there are only two
table properties on each of the parser types, but in the future as the number of
ble properties increases, the problem would get harder to solve without an
exception that could be thrown at parser creation time. As part of this change,
setXXX property methods of the factories no longer throw anIllegalArgument-

Exception if they are set to a property which cannot be supported.

TheFactoryException class was renamed toFactoryConfigurationError .
This rename was undertaken to emphasize that such an error condition is a fa
condition that an application should not be reasonable expected to handle.
March 2, 2000

SECTION 7 Future Directions
or
e

.
com-
eci-

re

r-
This first version of the Java API for XML Parsing includes the basic facilities f
working with XML documents using either the SAX or DOM APIs. However, ther
is always more to be done.

This section briefly describes our plans for future versions of this specification
Please keep in mind that the items listed here are preliminary and there is no
mitment to the inclusion of any specific feature in any specific version of the sp
fication. In addition, this list of items is by no means the only features that may
appear in a future revision. Your feedback is encouraged.

7.1 Updated SAX and DOM Support

As this specification was finalized, the SAX2 and DOM Level 2 specifications we
well on their way to completion. It is anticipated that these revisions to the SAX
and DOM specifications will be completed in time to be reflected in the next ve
sion of this API.
Java API for XML Parsing Version 1.0 37

Future Directions

38

s that

ture
n
o a

rs-
ation
7.2 XSL Plugability Support

XSL (eXtensible Stylesheet Language) is a language for expressing stylesheet
can be used with XML document. It consists of two parts:

• A language for transforming XSL documents (also known as XSLT)

• An XML vocabulary for specifying formatting specfics

XSL Transformations has been formalized as a W3C Recommendation. In a fu
version of the specification, we would like to provide a plugability API to allow a
application programmer to provide an XML document and an XSLT document t
wrapped XSLT processor and obtain a transformed result.

7.3 Pluggability Mechanism Enhancements

While system properties are a useful mechanism for allowing pluggability of pa
ers, they do not cover some common use cases. Future versions of this specific
need to provide alternative pluggability mechanisms for these cases.
March 2, 2000

	Java API for XML Parsing
	Contents
	SECTION 1 Overview�5
	SECTION 2 Endorsed Specifications�9
	SECTION 3 Plugability Layer�13
	SECTION 4 Package javax.xml.parsers�19
	SECTION 5 Conformance Requirements�31
	SECTION 6 Change History�35
	SECTION 7 Future Directions�37

	SECTION 1 Overview
	1.1 What is XML?
	1.2 XML and the Java™ Platform
	1.3 About this Specification
	1.4 Who Should Read this Document
	1.5 Development of this Specification
	1.6 Report and Contact
	1.7 Acknowledgements

	SECTION 2 Endorsed Specifications
	2.1 W3C XML 1.0 Recommendation
	2.2 W3C XML Namespaces 1.0 Recommendation
	2.3 Simple API for XML Parsing (SAX)
	2.4 Document Object Model (DOM) Level 1

	SECTION 3 Plugability Layer
	3.1 SAX Plugability
	3.1.1 Examples

	3.2 DOM Plugability
	3.2.1 Reliance on SAX API
	3.2.2 Examples

	3.3 Thread Safety

	SECTION 4 Package javax.xml.parsers
	4.1 public abstract class SAXParserFactory
	4.1.1 public static SAXParserFactory newInstance()
	4.1.2 protected SAXParserFactory()
	4.1.3 public SAXParser newSAXParser()
	4.1.4 public void setNamespaceAware(boolean aware)
	4.1.5 public void setValidating(boolean validating)
	4.1.6 public boolean isNamespaceAware()
	4.1.7 public boolean isValidating()

	4.2 public abstract class SAXParser
	4.2.1 protected SAXParser()
	4.2.2 public void parse(InputStream stream, HandlerBase base)
	4.2.3 public void parse(String uri, HandlerBase base)
	4.2.4 public void parse(File file, HandlerBase base)
	4.2.5 public void parse(InputSource source, HandlerBase base)
	4.2.6 public abstract org.xml.sax.Parser getParser()
	4.2.7 public abstract boolean isNamespaceAware()
	4.2.8 public abstract boolean isValidating()

	4.3 public abstract class DocumentBuilderFactory
	4.3.1 public static DocumentBuilderFactory newInstance()
	4.3.2 protected DocumentBuilderFactory()
	4.3.3 public DocumentBuilder newDocumentBuilder()
	4.3.4 public void setNamespaceAware(boolean aware)
	4.3.5 public void setValidating(boolean validating)
	4.3.6 public boolean isNamespaceAware()
	4.3.7 public boolean isValidating()

	4.4 public abstract class DocumentBuilder
	4.4.1 protected DocumentBuilder()
	4.4.2 public Document parse(InputStream stream)
	4.4.3 public Document parse(String uri)
	4.4.4 public Document parse(File file)
	4.4.5 public abstract Document parse(InputSource source)
	4.4.6 public abstract boolean isNamespaceAware()
	4.4.7 public abstract boolean isValidating()
	4.4.8 public abstract void setEntityResolver(EntityResolver er)
	4.4.9 public abstract void setErrorHandler(ErrorHandler eh)
	4.4.10 public Document newDocument()

	4.5 public class FactoryConfigurationError
	4.5.1 public FactoryConfigurationError()
	4.5.2 public FactoryConfigurationError(String msg)
	4.5.3 public FactoryConfigurationError(Exception e)
	4.5.4 public FactoryConfigurationError(Exception e, String msg)
	4.5.5 public String getMessage()
	4.5.6 public Exception getException()

	4.6 public class ParserConfigurationException
	4.6.1 public ParserConfigurationException()
	4.6.2 public ParserConfigurationException(String msg)

	SECTION 5 Conformance Requirements
	5.1 Document Character Set Encoding Conformance
	5.2 Well Formedness Conformance
	5.3 Validity Conformance
	5.4 XML Namespace Conformance
	5.4.1 Non Validating Parser Conformance
	5.4.2 Validating Parser Conformance

	SECTION 6 Change History
	6.1 From 1.0 Public Release to 1.0 Final Release
	6.2 From 1.0 Public Review to 1.0 Public Release

	SECTION 7 Future Directions
	7.1 Updated SAX and DOM Support
	7.2 XSL Plugability Support
	7.3 Pluggability Mechanism Enhancements

